Abstract of this communication paper-presentations : (SOS TRANSMISSION)
This paper describes an ORIGINAL IDEA to help cellular phone users caught in an accident. The idea has been developed keeping in mind the considerations of cost and compatibility with existing system. The Short Message Service or SMS as it is popularly referred to, is made use of for this purpose.
The solution offered is the Force-Transducer method. The victim is assumed to be unconscious and the accident is detected automatically. Detailed simulation results at a scaled down level are provided for this solution. The threshold level is set based on data collected from the experiments.
One major problem in such design is the technique to find the victim’s position. The Global Positioning System (GPS) is found to be costly. So, an unorthodox design using Radio Direction Finders (RDF) and beacon signals is described. The Goniometer or Crossed Loop Antenna is used for this purpose. This reduces cost effectively when compared with the GPS system.
The paper proceeds to suggest an abstract view of the software robot required to perform the Save Our Souls (SOS) message routing task. It uses a special hierarchical message dispatch system wherein people nearby and more likely to help are contacted. The robot also acts as a proxy to the victim and monitors responses for him.
This paper as a whole gives a cost-effective, high performance system which can be introduced in the market if any of the cellular companies are willing to encourage it.
This paper describes an ORIGINAL IDEA to help cellular phone users caught in an accident. The idea has been developed keeping in mind the considerations of cost and compatibility with existing system. The Short Message Service or SMS as it is popularly referred to, is made use of for this purpose.
The solution offered is the Force-Transducer method. The victim is assumed to be unconscious and the accident is detected automatically. Detailed simulation results at a scaled down level are provided for this solution. The threshold level is set based on data collected from the experiments.
One major problem in such design is the technique to find the victim’s position. The Global Positioning System (GPS) is found to be costly. So, an unorthodox design using Radio Direction Finders (RDF) and beacon signals is described. The Goniometer or Crossed Loop Antenna is used for this purpose. This reduces cost effectively when compared with the GPS system.
The paper proceeds to suggest an abstract view of the software robot required to perform the Save Our Souls (SOS) message routing task. It uses a special hierarchical message dispatch system wherein people nearby and more likely to help are contacted. The robot also acts as a proxy to the victim and monitors responses for him.
This paper as a whole gives a cost-effective, high performance system which can be introduced in the market if any of the cellular companies are willing to encourage it.