More than 3000 engineers find our updates useful. You can get them at your mail box!
Search your paper presentation and project titles:

Department/Area of interest: ( To list the projects / paper presentations)

Mechanical               Scada technology              Communication             Computer science           Alternative energy
Electrical                  Robotics                        Biometrics                     Artificial intelligence             Electronics

Free-space optical communication

Mention optical communication and most people think of fiber optics. But light travels through air for a lot less money. So it is hardly a surprise that clever entrepreneurs and technologists are borrowing many of the devices and techniques developed for fiber-optic systems and applying them to what some call fiber-free optical communication. Although it only recently, and rather suddenly, sprang into public awareness, free-space optics is not a new idea. It has roots that go back over 30 years--to the era before fiber-optic cable became the preferred transport medium for high-speed communication. In those days, the notion that FSO systems could provide high-speed connectivity over short distances seemed futuristic, to say the least. But research done at that time has made possible today's free-space optical systems, which can carry full-duplex (simultaneous bidirectional) data at gigabit-per-second rates over metropolitan distances of a few city blocks to a few kilometers.

FSO first appeared in the 60's, for military applications. At the end of 80's, it appeared as a commercial option but technological restrictions prevented it from success. Low reach transmission, low capacity, severe alignment problems as well as vulnerability to weather interferences were the major drawbacks at that time. The optical communication without wire, however, evolved! Today, FSO systems guarantee 2.5 Gb/s taxes with carrier class availability. Metropolitan, access and LAN networks are reaping the benefits.

The use of free space optics is particularly interesting when we perceive that the majority of customers does not possess access to fibers as well as fiber installation is expensive and demands long time. Moreover, right-of-way costs, difficulties in obataining government licenses for new fiber installation etc. are further problems that has turned FSO into the option of choice for short reach applications.
FSO uses lasers, or light pulses, to send packetized data in the terahertz (THz) spectrum range. Air, ot fiber, is the transport medium. This means that urban businesses needing fast data and Internet access have a significantly lower-cost option.

FSO technology is implemented using a laser device .These laser devices or terminals can be mounted on rooftops ,Corners of buidings or even inside offices behind windows. FSOdevices look like security video cameras.

Low-power infrared beams, which do not harm the eyes, are the means by which free-space optics technology transmits data through the air between transceivers, or link heads, mounted on rooftops or behind windows. It works over distances of several hundred meters to a few kilometers, depending upon atmospheric conditions.
Commercially available free-space optics equipment provides data rates much higher than digital subscriber lines or coaxial cables can ever hope to offer. And systems even faster than the present range of 10 Mb/s to 1.25 Gb/s have been announced, though not yet delivered.

Intense Debate Comments